Gauge Theories in Particle Physics Volume I A Practical Introduction From Relativistic Quantum Mechanics to Qed (Graduate Student Series in Physics) (Graduate Student Series in Physics) MOBI Ian Johnston Rhind Aitchison Anthony J G Hey Free Get
Category of Ebook: "Science" 
User's Rating: 11 ratings

. 

Language: N/A  More Info: Paperback, 422 pages 
Date of Publication: September 1st 2002 by Taylor & Francis  Author/Writer: Ian Johnston Rhind Aitchison, Anthony J.G. Hey 
Book Tags: Science, Physics, Non Fiction  Original Book Title: Gauge Theories in Particle Physics, Volume I: A Practical Introduction : From Relativistic Quantum Mechanics to Qed (Graduate Student Series in Physics) (Graduate Student Series in Physics) 
Page Description:
Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thoro Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results.
For this twovolume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and selfcontained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates.
These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED, the second volume is devoted to the nonAbelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.